STRONG SPLIT LICT DOMINATION OF A GRAPH

M.H. Muddebihal ${ }^{*}$

Megha Khandelwal*

Abstract

In this paper we initiate the study of a variation of standard domination such as strong split Lict domination. A dominating set $D_{s s}$ of a lict graph $n(G)$ is a strong split lict dominating set if $\left\langle V(n(G))-D_{s s}\right\rangle$ is totally disconnected with at least two vertices. The strong split lict domination number of a graph is the minimum cardinality of the strong split lict dominating set of G and is denoted by $\gamma_{s s n}(G)$. In this paper $\gamma_{s s n^{-}}$number of some standard graphs is obtained. Also we established upper bounds and lower bounds on $\gamma_{s s n^{-}}$number in terms of elements of G . Subject classification number: AMS-O5C69, 05C70.

Keywords: Domination/ Entire Domination/ Edge Domination/Strong Split Domination/Lict Graph.

[^0]1. Introduction: The graph theoretical terminology not present here can be found in Harary [2].All the graphs considered here are simple, finite, non-trivial, undirected and connected. As usual $p=|V|$ and $q=|E|$ denote the number of vertices and edges of a graph G. The study of domination in graphs was begun by Ore [8] and Berge [1].The domination in graphs is discussed by T.W.Hynes, S.T.Hedetniemi and P.J. Slater in [6]

For any graph $G=(V, E)$,the lict graph $n(G)$ has vertex set as the union of the set of edges and the set of cut vertices of graph G in which two vertices of $n(G)$ are adjacent if and only if their corresponding elements in G are adjacent or incident. This concept was introduced in [5].

We begin by recalling some standard definition from domination theory.
A set $\mathrm{D} \subseteq V(G)$ is said to be a dominating set of G , if every vertex in $(V-D)$ is adjacent to at least one vertex in D . The minimum cardinality of minimal dominating set D is called domination number of G and is denoted by $\gamma(G)$.

Edge dominating set $F \subseteq E(G)$ is such that every edge in $(E(G)-F)$ must be adjacent to at least one edge in F. The minimum cardinality of edge dominating set is called edge domination number and is denoted by $\gamma^{\prime}(G)$. Edge domination number was studied by S.L. Mitchell and Hedetniemi in [7].

A set D_{ε} of elements of G is an entire dominating set if every element not in D_{ε} is either adjacent or incident to at least one element in D_{ε}. The entire domination number is denoted as $\gamma_{\varepsilon n}(G)$. This concept was introduced in [4].

A dominating set D_{s} of G is called strong split dominating set of G if $\left\langle V(G)-D_{s}\right\rangle$ is totally disconnected with at least two isolated vertices. The strong split domination number $\gamma_{s s}(G)$ is the minimum cardinality of minimal strong split dominating set. This concept of strong split domination was introduced in [3].

Analogously we define strong split lict dominating set of a graph G. A set $D_{s s}$ is said to be strong split lict dominating set if $\left\langle V(n(G))-D_{s s}\right\rangle$ is totally disconnected with at least two vertices. The strong split lict domination number of a graph G is the minimum cardinality of the strong split lict dominating set of G and is denoted by $\gamma_{s s n}(G)$.

A vertex cover in a graph G is a set of vertices that covers all the edges of G. The vertex covering number $\alpha_{0} G$ is a minimum cardinality of a vertex cover in G. An edge cover of a

[^1]graph G without isolated vertices is a set of edges of G that covers all the vertices of G. The edge covering number $\alpha_{1} G$ of a graph G is the minimum cardinality of an edge cover of G. A set of vertices/edges in a graph G is called an independent set if no two vertices/edges in the set are adjacent. The vertex independence number $\beta_{0} G$ is the maximum cardinality of an independent set of vertices. The edge independence number $\beta_{1} G$ of a graph G is the maximum cardinality of an independent set of edges.

A set of vertices S in a graph G is called an independent set if no two vertices in S are adjacent. The lower independence number $i(G)$ is the minimum cardinality of a maximal independent set of G.

The minimum distance between any two farthest vertices of a connected graph G is called the diameter of G and is denoted by diam G.

The clique number of a graph G is the maximum order of the largest clique in G and it is denoted as $\omega(G)$.
We need the following Theorems to establish our further results:
Theorem A [7]: If G is a graph with no isolated vertex, then $\gamma G \leq \frac{p}{2}$
Theorem B [3]: For any connected graph $\mathrm{G},(G) \neq K_{p,} \gamma_{s s}(G)=\alpha_{0}(G)$.
In section 2, we determine this parameter for some standard graphs. We obtain best possible upper and lower bound for $\gamma_{s s n}(G)$.Further we obtain Northus Gaddum type results.

2. RESULTS

First we list out the exact values of $\gamma_{s s n}(G)$ for some standard graphs.

Theorem 1:

1) For any cycle C_{p} with $p \geq 4$ vertices $\gamma_{s s n}\left[C_{p}\right]=\left\{\begin{array}{c}\frac{p}{2} \text { if } p \equiv 0(\bmod 2) \\ {\left[\frac{p}{2}\right] \text { otherwise }}\end{array}\right.$
2) For any path P_{p} with $p \geq 4$ vertices $\gamma_{s s n}\left[P_{p}\right]=p-1=q$.
3) For any complete graph K_{p} with $p \geq 4$ vertices $\gamma_{s s n}\left[P_{p}\right]=\frac{p(p-1)}{2}-2$.
4) For any bipartite graph $K_{m, n}$ with $m \leq n, \gamma_{s s n}\left[K_{m, n}\right]=m . n-m$.

The following are some observations on $\gamma_{s s n}[G]$:
i) For any graph $G=K_{m, n} ; m, n \geq 2, m<n$,

$$
n\left(K_{m, n}\right)=K_{m} \times K_{n} .
$$

Hence $\gamma_{s s n}\left(K_{m} \times K_{n}\right)=m . n-m$.
ii) For any graph $G, \gamma_{s s}(G) \leq \gamma_{s s n}(G)$. Equality holds for any $G=C_{p}$.
iii) For any path P_{p} :
a) $\gamma_{s s n}\left[P_{p}\right]=\gamma_{s s}\left[L(P)_{p}\right]+\left\lfloor\frac{p}{2}\right\rfloor$ where $p \geq 4$.
b) $\gamma_{s s n}\left[P_{p}\right]=\gamma_{s s n}\left[L(P)_{p}\right]+1$ where $p \geq 5$.

In the following Theorem we established the equality for $\gamma_{s s n}$ of a wheel.
Theorem 2: For a wheel Wp; $p \geq 4$ vertices

$$
\gamma_{\text {ssn }}\left(W_{p}\right)=\left\{\begin{array}{lll}
p+n, & n=\frac{p-4}{2}, & P=\text { even } \\
p+m, & m=\frac{p-3}{2}, & P=\text { odd }
\end{array}\right.
$$

Proof: Let V $[\mathrm{Wp}]=\left\{v_{1}, v_{2}, \ldots \ldots . . v_{\mathrm{p}}\right\}$; deg $v_{\mathrm{i}}=3$, for $\mathrm{i}=1,2, \ldots \ldots \mathrm{p}-1$ and $\operatorname{deg} v_{\mathrm{p}}=\mathrm{p}-1$. Let $\mathrm{E}\left[\mathrm{W}_{\mathrm{\rho}}\right]=\left\{e_{1}, e_{2}, \ldots \ldots . ., e_{\mathrm{p}-2}, e_{\mathrm{p}-1}, e^{\prime}{ }_{1}, e^{\prime}{ }_{2} \ldots . . e_{\mathrm{p}-1}{ }^{\prime}\right\}$ where each $e_{\mathrm{i}}=v_{\mathrm{i}} v_{\mathrm{p}}$ With $\mathrm{i}=1,2, \ldots \ldots \mathrm{p}-1$ and $e_{\mathrm{i}}^{\prime}=v_{\mathrm{i}} v_{\mathrm{i}+1}, \mathrm{i}=1,2, \ldots \ldots \mathrm{p}-2$ and $e_{\mathrm{p}-1}^{\prime}=v_{\mathrm{p}-1} v_{1}$. Now $\mathrm{V}\left[n\left(\mathrm{~W}_{\mathrm{p}}\right)\right]=\left\{e_{1}, e_{2}, \ldots \ldots . ., e_{\mathrm{p}-2}, e_{1}^{\prime}, e^{\prime}{ }_{2} \ldots \ldots e_{\mathrm{p}-1}^{\prime}\right\}$.

Consider $\mathrm{S}_{1}, \mathrm{~S}_{2} \subseteq \mathrm{~V}[n(\mathrm{Wp})]$, such that $\mathrm{S}_{1}=\left\{e_{1}, e_{2}, \ldots \ldots e_{\mathrm{p}-2}, e_{\mathrm{p}-1}\right\}$ and $S_{2}=\left\{e_{1}^{\prime}, e_{2}^{\prime}, \ldots \ldots . e_{p-2}^{\prime}, e_{P-1}^{\prime}\right\}$.The induced subgraph $\left\langle\mathrm{S}_{1}\right\rangle$ is a complete subgraph
$\mathrm{K}_{\mathrm{P}-1}$ and induced subgraph $\left\langle\mathrm{S}_{2}\right\rangle$ is a cycle in $n(\mathrm{G})$. We consider the following two cases.

Case 1: Suppose p is even. Then $\left|\mathrm{S}_{2}\right|$ in an odd number, consider $\mathrm{S}^{\prime} \subseteq \mathrm{S}_{1}$ with $\mathrm{S}^{\prime}{ }_{1}=\left\{e_{1}, e_{2}, \ldots \ldots e_{\mathrm{p}-2}\right\}$ and consider another set $\mathrm{S}^{\prime}{ }_{2} \subseteq \mathrm{~S}_{2}$ such that
$\mathrm{S}_{2}^{\prime}=\left\{e_{2}^{\prime}, e_{4}^{\prime}, \ldots \ldots ., e_{P-4}^{\prime}, e_{p-2}^{\prime}, e_{p-1}^{\prime}\right\}$.Clearly $\left\langle\mathrm{V}\left(n\left(\mathrm{~W}_{\mathrm{p}}\right)-\left(\mathrm{S}^{\prime}{ }_{1} \cup \mathrm{~S}^{\prime}{ }_{2}\right)\right\rangle\right.$ is totally disconnected. Then $\left(\mathrm{S}^{\prime} \cup \cup \mathrm{S}^{\prime}{ }_{2}\right)$ is a strong split dominating set of $\mathrm{n}(\mathrm{Wp})$ by the definition.

Hence $\gamma_{\text {ssn }}\left(\mathrm{W}_{\mathrm{p}}\right)=\left|\mathrm{S}^{\prime}{ }_{1} \cup \mathrm{~S}^{\prime}{ }_{2}\right|=(\mathrm{P}-2)+2+\frac{\mathrm{P}-4}{2}$
Which results in to $\gamma_{\mathrm{ssn}}(\mathrm{Wp})=\mathrm{P}+\mathrm{n}$, where $\mathrm{n}=\frac{\mathrm{P}-4}{2}$
Case 2: Suppose p is odd. Then $\left|\mathrm{S}_{2}\right|=$ even number. We consider $\mathrm{S}^{\prime \prime}{ }_{1} \subseteq \mathrm{~S}_{1}$, with $S_{1}^{\prime \prime}=\left\{e_{1}, e_{2}, \ldots . . e_{P-2}\right\} \quad$ and another set $S^{\prime \prime}{ }_{2} \subseteq S_{2}$, such that $S_{2}^{\prime \prime}=\left\{e_{2}^{\prime}, e_{3}^{\prime}, e_{5}^{\prime}, e_{7}^{\prime}, e_{9}^{\prime} \ldots . . e_{P-5}^{\prime}, e_{P-3}^{\prime} e_{P-2}^{\prime}, e_{p-1}^{\prime}\right\}$. Clearly $\mathrm{S}^{\prime \prime} \cup \mathrm{S}^{\prime \prime}{ }_{2}$ forms a strong split lict dominating set of W_{p}, since $\left\langle\mathrm{V}\left[n\left(\mathrm{~W}_{\mathrm{p}}\right)\right]-\left(\mathrm{S}^{\prime \prime}{ }_{1} \cup \mathrm{~S}^{\prime \prime}{ }_{2}\right)\right\rangle$ is totally disconnected.

Then $\gamma_{\mathrm{ssn}}\left(\mathrm{W}_{\mathrm{p}}\right)=\left|\left(\mathrm{S}^{\prime \prime} \cup \mathrm{S}^{\prime \prime}{ }_{2}\right)\right|$, also $\mathrm{S}_{1}{ }_{1}, \mathrm{~S}^{\prime \prime}{ }_{2}$ are vertex disjoint sets, so it results in to $\gamma_{\text {ssn }}\left(\mathrm{W}_{\mathrm{p}}\right)=\mathrm{p}+\frac{\mathrm{p}-3}{2}=\mathrm{p}+\mathrm{m}$, where $\mathrm{m}=\frac{\mathrm{p}-3}{2}, \mathrm{p}=$ odd.

Here we have found an upper bound for $\gamma_{\text {ssn }}(G)$ in terms of $\gamma(G)$.

Theorem 3: For any connected (p.q) graph $\mathrm{G}, n(G) \neq \mathrm{K}_{\mathrm{p}}$ with $\mathrm{p} \geq 4$ vertices, $\gamma_{\text {ssn }}[G] \geq p-[\gamma(G)+1]$. Equality holds for $C_{2 p}, p \geq 3$.

Proof: $\quad \operatorname{In} n(G), V[n(G)]=\mathrm{E}(\mathrm{G}) \cup \mathrm{C}(\mathrm{G})$. If $n(G)=\mathrm{K}_{\mathrm{p}}$, Then by definition, $\gamma_{\text {ssn }}$ - set does not exist. We consider the following two cases.

Case 1: \quad Suppose G is a tree. Then in $n(G)$ each block is complete. Let $\mathrm{S}=\left\{e_{1}, e_{2}, \ldots \ldots . . e_{\mathrm{i}}\right\}$ be the set of all nonend edges in G and each $e_{i} \in G$ preserves a one to one correspondence with $v_{i} \in \mathrm{D}$, where $\mathrm{D}=\left\{v_{1}, v_{2}, v_{3} \ldots . . v_{\mathrm{i}}\right\}$ and $\mathrm{D} \subseteq \mathrm{V}[n(\mathrm{G})]$. Suppose $|\mathrm{D}|=\mathrm{h}$. Then $\langle\mathrm{V}[n(\mathrm{G})]-\mathrm{D}\rangle=\mathrm{H}$.Also H has maximum $\mathrm{h}+1$ components.

Now we partition H into H_{1} and H_{2}, where $\mathrm{H}_{1}=\left\{v_{\mathrm{j}}\right\} .1 \leq \mathrm{j} \leq \mathrm{h}+1$, and each v_{j} is
an isolate in H . Consider $\mathrm{H}_{2}=\left\{\mathrm{b}_{\mathrm{k}}\right\} .1 \leq \mathrm{k} \leq \mathrm{h}+1$ and each b_{k} is a complete block with m vertices; $m \geq 2$. We consider a dominating set D_{1} which is not minimal in H_{2}. The set D_{1} consists of $(m-1)$ vertices from each block b_{k}, such that $\langle V[n(G)]$ $\left.\left(D \cup D_{1}\right)\right\rangle$ is totally disconnected, it implies that $\left(D \cup D_{1}\right)$ is $\gamma_{\text {ssn }}-$ set of G.

Further let D is the minimal dominating set of G , then at least one vertex $v \in \mathrm{~V}[n(G)]$ such that $v \in\left(\mathrm{D}_{1} \cup \mathrm{D}_{2}\right) \cap \mathrm{D}$ then it follows

$$
\left|\mathrm{D}_{1}+\mathrm{D}_{2}\right|+|\mathrm{D}|+1 \geq \mathrm{p} \text { resulting into } \gamma_{\mathrm{ssn}}(\mathrm{G})=\mathrm{p}-[\gamma(\mathrm{G})+1] .
$$

Case 2: Suppose G is not a tree. Then G has $p \geq 4$ and it contains at least one block with minimum three vertices.Now $\mathrm{V}[n(\mathrm{G})]=\mathrm{E}(\mathrm{G}) \cup \mathrm{C}(\mathrm{G})$. Let $\mathrm{S}_{1}=\left\{e_{1}, e_{2}, \ldots \ldots e_{\mathrm{j}}\right\}$ be the set of nonendbridges of G , which preserves one to one correspondence with the vertex set $\mathrm{D}_{1} \subseteq \mathrm{~V}[n(G)]$. Let $\left|\mathrm{D}_{1}\right|=\mathrm{h}$, then $\left.\left\langle\mathrm{V}[n(G)]-\mathrm{D}_{1}\right)\right\rangle=\mathrm{H}$ has $\mathrm{h}+1$ components. We consider $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \mathrm{H}_{3}$; where $\mathrm{H}_{1}=\left\{v_{\mathrm{i}}\right\}$ where each $v_{\mathrm{i}} \in$ $\mathrm{V}\left[(\mathrm{n}(\mathrm{G})]\right.$ is an isolate and H_{2} is a set of vertex disjoint components which are complete, $\mathrm{H}_{2}=\cup_{i=1}^{h+1} \mathrm{~K}_{\mathrm{m}_{\mathrm{i}}}$, where each $\mathrm{K}_{\mathrm{m}_{\mathrm{i}}}$ is a complete block with m_{i} vertices, $\mathrm{m}_{\mathrm{i}} \geq$ $2,3,4 \ldots \ldots$ for $\mathrm{i} \geq 1$ and $\mathrm{H}_{3}=\bigcup_{j=1}^{h+1} \mathrm{~B}_{\mathrm{j}}$ where each B_{j} is a noncomplete block. We consider $\mathrm{D}_{2}=\left\{v_{\mathrm{i}}\right\} \subseteq \mathrm{V}\left[\mathrm{H}_{2}\right]$ which includes $\left(\mathrm{m}_{\mathrm{i}}-1\right)$ vertices from each $\mathrm{K}_{\mathrm{m}_{\mathrm{i}}} \in \mathrm{H}_{2}$ gives an isolate, then $\left(\mathrm{H}_{2}-\mathrm{D}_{2}\right)$ is totally disconnected, Further we consider $\mathrm{D}_{3}=\left\{v_{1}, v_{2} \ldots \ldots v_{\mathrm{k}}\right\} \forall v_{\mathrm{i}} \in \mathrm{Bj}, 1 \leq \mathrm{i} \leq \mathrm{k}$, and degree of each v_{i} is $\delta\left(\mathrm{B}_{\mathrm{j}}\right)$

Now we consider $\mathrm{B}_{\mathrm{j}}-\mathrm{D}_{3}=\mathrm{H}_{4}$ in which each element is an isolate, then $\left(D_{1} \cup D_{2} \cup D_{3}\right)$ is such that $\left\langle V[n(G)]-\left(D_{1} \cup D_{2} \cup D_{3}\right)\right\rangle$ is totally disconnected. So $\left(D_{1} \cup D_{2} \cup D_{3}\right)$ is a $\gamma_{\text {ssn }}-$ set. And if D is the minimal dominating set of G then there exist at least one vertex $v_{i} \in C(G)$ such that $v_{i} \in D \cap\left(D_{1} \cup D_{2} \cup D_{3}\right)$ then it gives $\left|D_{1} \cup D_{2} \cup D_{3}\right|+|D|+1 \geq p$ or $\left(D_{1} \cup D_{2} \cup D_{3}\right) \geq p-(|D|+1)$ such that $\gamma_{\mathrm{ssn}}(\mathrm{G}) \geq \mathrm{p}-(\gamma(\mathrm{G})+1)$.Hence the result.

For equality:Let C_{p} be a cycle with $\mathrm{p} \geq 6$ or $\mathrm{G}=\mathrm{C}_{2 \mathrm{n}}, \mathrm{n} \geq 3$.
Let D_{ss} be the minimal strong split lict dominating set of G , then

[^2]$\left|D_{\text {ss }}\right|=\left\lceil\frac{p}{2}\right\rceil ;$ whereas $p-[\gamma(G)+1]=p-\left(\left\lceil\frac{p}{3}\right\rceil+1\right)$. Now one can easily verify that
$\left|D_{\text {ss }}\right|=p-(\gamma(G)+1)$ for a cycle $C_{2 n}, n \geq 3$.

Theorem 4: For any connected (p, q) graph G , with $\mathrm{p} \geq 4$ vertices and $n(G) \neq \mathrm{K}_{\mathrm{p}}$, then $\gamma_{\varepsilon}[\mathrm{G}] \leq \gamma(\mathrm{G})+\gamma^{\prime}[\mathrm{G}] \leq \gamma_{\mathrm{ssn}}[\mathrm{G}]$.
Proof: First we establish the lower bound. Let D and F be the minimal dominating set and edge dominating set of G. Then $\mathrm{D} \cup \mathrm{F}$ is an entire dominating set of G . Thus $\gamma_{\varepsilon}(\mathrm{G}) \leq|\mathrm{D} \cup \mathrm{F}|=\gamma(\mathrm{G})+\gamma^{\prime}(\mathrm{G})$.

For the upper bound Let D_{ss} is a γ_{ssn} - set of G and let $\mathrm{F}_{1}=\left\{e_{1}\right.$, $\left.e_{2}, \ldots \ldots \ldots e_{\mathrm{n}}\right\}$ be the minimal edge dominating set of G, then there exist $\mathrm{D}_{1}=\left\{v_{1}\right.$, $\left.v_{2}, \ldots \ldots . . v_{\mathrm{n}}\right\} \subseteq \mathrm{V}[n(G)] \forall v_{\mathrm{i}} \in \mathrm{D}_{1}, v_{\mathrm{i}}$ corresponds to $e_{\mathrm{i}} \in \mathrm{F}_{1}$, such that, $\mathrm{D}_{1} \subseteq \mathrm{D}_{\text {ss }}$. We take $\mathrm{F}_{2}=\left\{e_{\mathrm{j}}\right\}$ where each e_{j} is nonendbridge in G , then $\mathrm{D}_{2}=\left\{v_{\mathrm{j}}\right\}$ is a set of all cut vertices in $\mathrm{n}(\mathrm{G})$ such that each $v_{\mathrm{j}} \in \mathrm{D}_{2}$ corresponds to $e_{\mathrm{j}} \in \mathrm{F}_{2}$ and $\mathrm{D}_{2} \subseteq \mathrm{D}_{\mathrm{ss}}$. Now consider a set $\mathrm{V}^{\prime} \subseteq \mathrm{V}[n(G)]$ such that $\mathrm{V}^{\prime} \in \mathrm{N}\left(\mathrm{D}_{1} \cup \mathrm{D}_{2}\right)$, so that $\mathrm{V}^{\prime} \subseteq$ $\mathrm{V}[n(G)]-\left(\mathrm{D}_{1} \cup \mathrm{D}_{2}\right)$ and $\left\langle\mathrm{V}[n(G)]-\left(\mathrm{V}^{\prime} \cup \mathrm{D}_{1} \cup \mathrm{D}_{2}\right)\right\rangle$ is totally disconnected then
$\left(D_{1} \cup D_{2}\right) \cup V^{\prime}=D_{\text {ss }}$

Now let D_{3} is the minimal dominating set of G, then D_{3} consists of vertices which are incident to at least one edge $e_{j} \in \mathrm{~F}_{2}$. Also in G each cut vertex $v_{\mathrm{j}} \in \mathrm{D}_{3}$ is such that $v_{j} \in \mathrm{~V}^{\prime} \subseteq \mathrm{V}[n(G)]$, then $\left|\mathrm{D}_{3}\right| \leq\left|\mathrm{F}_{2}\right|+\left|\mathrm{V}^{\prime}\right|$ which implies

$$
\begin{equation*}
\left|\mathrm{D}_{3}\right| \leq\left|\mathrm{D}_{2}\right|+\left|\mathrm{V}^{\prime}\right| \tag{2}
\end{equation*}
$$

Combining (1) and (2) we get $\left|D_{1}\right|+\left|D_{3}\right| \leq\left|D_{\text {ss }}\right|$ which gives

$$
\gamma(\mathrm{G})+\gamma^{\prime}(\mathrm{G}) \leq \gamma_{\mathrm{ssn}}(\mathrm{G})
$$

Thus $\quad \gamma_{\text {gn }}(\mathrm{G}) \leq \gamma(\mathrm{G})+\gamma^{\prime}(\mathrm{G}) \leq \gamma_{\text {ssn }}(\mathrm{G})$.

Equality for strong split domination number of a tree is established in the following Theorem.

Theorem 5: For any connected (p, q) tree T , with $\mathrm{p} \geq 4$ vertices, $\mathrm{T} \neq \mathrm{K}_{1, n}$ with $n \geq 2$, then $\gamma_{\text {ssn }}(T)=q$
Proof: \quad Suppose T is a tree and assume $\mathrm{T}=\mathrm{K}_{1, n}$. Then $n(\mathrm{~T})=\mathrm{K}_{\mathrm{p}}$, from the definition of strong split lict domination, $\gamma_{\text {ssn }}$ - set does not exist.

Further for any tree T , with $p \geq 4$, each block in $\mathrm{n}(\mathrm{T})$ is complete and each cut vertex of $n(G)$ lies on exactly two blocks. Now $V[n(G)]=E(G) \cup C(G)$ and $V[n(G)]-E(G)=C(G)$ gives a disconnected graph such that $\forall v_{i} \in C(G)$ is an isolate. Clearly $E(G)$ is a $Y_{\text {ssn }}$-set of T. Hence $|E(G)|=q=Y_{\text {ssn }}(G)$.

Theorem 6: If G is a connected graph of order $\mathrm{p} \geq 4$ and $n(G) \neq \mathrm{K}_{\mathrm{p}}$, then $\left\lceil\frac{\text { diam } G+1}{2}\right\rceil \leq \gamma_{\mathrm{ssn}}(\mathrm{G})$. Equality holds for C_{4}.

Proof: \quad Suppose $\mathrm{E}(\mathrm{G})=\left\{e_{1}, e_{2}, \ldots . . e_{\mathrm{n}}\right\}$ and $\mathrm{C}(\mathrm{G})=\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \ldots . . \mathrm{c}_{\mathrm{j}}\right\}$ be the edge set and cutvertex set of G respectively. Then $\mathrm{V}[n(G)]=\mathrm{E}(G) \cup \mathrm{C}(G)$. Let $\mathrm{S}=\left\{e_{1}, e_{2}\right.$, $\left.\ldots . . e_{\mathrm{j}}\right\}, 1 \leq \mathrm{j} \leq \mathrm{n}$ constitute the diameteral path in G . Then $|\mathrm{S}|=\operatorname{diam} G$. Let D be a dominating set in $\mathrm{n}(\mathrm{G})$ and $\mathrm{D}_{1} \subseteq \mathrm{~V}[n(G)]-\mathrm{D}$, such that $\mathrm{D}_{1} \in \mathrm{~N}(\mathrm{D})$, again we take $\mathrm{D}^{\prime}{ }_{1} \subseteq \mathrm{D}_{1}$ such that $\mathrm{H}=\mathrm{V}[n(G)]-\left(\mathrm{D} \cup \mathrm{D}^{\prime}{ }_{1}\right)$ and $\langle\mathrm{H}\rangle$ is totally disconnected. Hence $\mathrm{D} \cup \mathrm{D}^{\prime}{ }_{1}=\mathrm{D}_{\mathrm{ss}}$. Further since $\mathrm{S} \subseteq \mathrm{V}\left[(n(G)]\right.$ and $\mathrm{D} \cup \mathrm{D}^{\prime}{ }_{1}$ is a γ_{ssn} - set, the diameteral path includes at most $\gamma_{\mathrm{ssn}}(G)-1$ vertices which belongs to neighborhood of $\left(\mathrm{D} \cup \mathrm{D}^{\prime}{ }_{1}\right)$ in $n(G)$. Hence diam $G \leq \gamma_{\mathrm{ssn}}(G)+\gamma_{\mathrm{ssn}}(G)-1$ which follows $\left\lceil\frac{\operatorname{diam} G+1}{2}\right\rceil \leq \gamma_{\text {ssn }}(G)$.
One can easily verify for the equality.

Theorem 7: For any connected (p, q) graph G, $n(G) \neq \mathrm{K}_{\mathrm{p}}$ then,$\gamma_{\mathrm{ssn}}(\mathrm{G}) \leq \alpha_{1}(\mathrm{G})+\alpha_{1}[n(G)]-1$ Equality holds for $\mathrm{W} p, \mathrm{p} \geq 4$ vertices.

Proof: Consider a set $\mathrm{D}=\left\{e_{\mathrm{i}}\right\}, \mathrm{i}=1,2 \ldots . n$ be the maximal edge cover of G , so that
$|\mathrm{D}|=\alpha_{1}(\mathrm{G})$. Further $\mathrm{V}[n(G)]=\left\{e_{\mathrm{j}}\right\}$, where each $e_{\mathrm{j}}=e_{\mathrm{i}} e_{\mathrm{j}}$ or $e_{\mathrm{j}} \mathrm{c}_{\mathrm{k}}$ where adjacency of e_{i} with e_{j}, and adjacency of e_{j} with cut vertex c_{k} is preserved as in G. We take a spanning tree H of $n(G)$ and let $\mathrm{D}_{1}=\left\{e_{1}^{\prime}, e_{2}^{\prime}, \ldots \ldots . . e_{k}^{\prime}\right\} \subset \mathrm{E}[n(G)]$ be the edge cover of H, then $\quad\left|D_{1}\right|=\alpha_{1}(H)=\alpha_{1}[n(\mathrm{G})]$. Consider $\mathrm{H}_{1}=\left\{e^{\prime \prime}{ }_{\mathrm{j}}\right\}$ where each $e^{\prime \prime}{ }_{\mathrm{j}}$ is only one edge chosen among all edges $e_{\mathrm{i}} e_{\mathrm{j}}$ incident to vertex e_{j} in $n(G)$ which corresponds to edge e_{j} of G and $e_{\mathrm{j}} \in \alpha_{1}(\mathrm{G})$ set, then $\mathrm{H}_{1} \subset \alpha_{1}(G)$-set. Further we consider a strong split dominating set $\mathrm{D}_{\mathrm{ss}}=\left\{e_{\mathrm{j}}, \mathrm{c}_{\mathrm{k}}\right\}$ in $n(\mathrm{G})$, such that $\mathrm{D}_{\text {ss }} \subseteq \mathrm{H} \cup \mathrm{H}_{1}$, which gives $\mathrm{D}_{\text {ss }} \subseteq|\mathrm{D}|+\left|\mathrm{D}_{1}\right|-1$ resulting in to $\gamma_{\text {ssn }}(\mathrm{G}) \leq \alpha_{1}(G)+$ $\alpha_{1}(n(G))-1$.
Theorem 8: For any connected (p, q) graph G. $n(G) \neq \mathrm{K}_{\mathrm{p}}, \mathrm{p} \geq 4$ vertices, $\gamma_{\mathrm{ssn}}(\mathrm{G}) \geq\left\lceil\frac{\mathrm{p}}{2}\right\rceil$
Proof: We consider the following cases:
Case 1: Suppose G is a tree, with $\mathrm{H}=\left\{v_{1}, v_{2} \ldots v_{i}\right\}$ be the set of all vertices in T . Then $\mathrm{I}=$ [$\left.v_{1}, v_{2}, \ldots . v_{\mathrm{j}}\right]$ be the set of all end vertices in T and let $\mathrm{H}^{\prime}=\left[e_{1}, e_{2}, \ldots\right.$ ei $]$ be the set of all non end edges in T , also $\mathrm{I}^{\prime}=\left\{e_{1}, e_{2}, \ldots . . e_{\mathrm{j}}\right\}$ be the set of all end edges in T . In $n(\mathrm{~T}), \mathrm{C}$ be the set of all cut vertices in $\mathrm{T}, \mathrm{V}[n(\mathrm{~T})]=\mathrm{H}^{\prime} \cup \mathrm{I}^{\prime} \cup \mathrm{C}$. Suppose D_{ss} be a $\gamma_{\text {ssn }}$ - set of T such that $D_{s s}=H^{\prime} \cup I^{\prime \prime}$ where $I^{\prime \prime} \subseteq I^{\prime}$, which gives

$$
\left|\mathrm{H}^{\prime} \cup \mathrm{I}^{\prime \prime}\right|=\gamma_{\mathrm{ssn}}(\mathrm{~T}) \geq \frac{\mathrm{H} \cup \mathrm{I}}{2} \text { resulting in to } \gamma_{\mathrm{ssn}}(\mathrm{G}) \geq\left\lceil\frac{\mathrm{p}}{2}\right\rceil
$$

Case 2: Suppose G is not a tree, then there exists at least one edge joining two distinct vertices of a tree T, which forms a cycle. From the above case 1
$|\mathrm{V}(n(G))| \geq\left|\mathrm{H}^{\prime} \cup \mathrm{I}^{\prime} \cup \mathrm{C}\right|+1$ which gives

$$
\left|\mathrm{H}^{\prime} \cup \mathrm{I}^{\prime \prime}\right|+1 \geq\left|\frac{\mathrm{H} \cup \mathrm{I}}{2}\right|+1 \text { resulting in to } \gamma_{\mathrm{ssn}}(\mathrm{G}) \geq\left\lceil\frac{\mathrm{p}}{2}\right\rceil .
$$

Theorem 9: For any connected (p, q) graph G with $n(G) \neq \mathrm{K}_{\mathrm{p}}, \mathrm{p} \geq 4$ vertices, $\gamma_{\mathrm{ssn}}(G) \geq \gamma(G)$. Equality holds if $\mathrm{G}=\mathrm{C}_{4}$.

Proof: Let G be a connected (p, q) graph and $D_{\text {ss }}$ and D are $\gamma_{\text {ssn }}$ - set and γ-set of G respectively. By the Theorem [A] and Theorem [8], we have $\gamma_{\mathrm{ssn}}(\mathrm{G}) \geq \gamma(\mathrm{G})$. Also one can easily verify the equality.

Theorem10: For any connected (p, q) graph G. $\mathrm{n}(\mathrm{G}) \neq \mathrm{K}_{\mathrm{p}}, \mathrm{p} \geq 4$ vertices,$\gamma_{\mathrm{ss}}[\mathrm{L}(\mathrm{G})] \leq \gamma_{\mathrm{ssn}}(\mathrm{G})$ equality holds if G is a block graph.
Proof: Since $\mathrm{V}[n(G)] \supseteq \mathrm{V}[\mathrm{L}(G)]$ by definition. Hence the result follows. And if $G=$ block graph then $\mathrm{V}[n(G)]=\mathrm{V}[\mathrm{L}(G)]$ which gives the equality.

Theorem 11: For any connected (p, q) graph G, with $\mathrm{p} \geq 4$ vertices, $n(G) \neq \mathrm{K}_{\mathrm{p}}$,
$\gamma_{\mathrm{n}}(\mathrm{G})+\gamma_{\mathrm{ssn}}(G) \leq \mathrm{q}+\mathrm{c}$, where c is the number of cutvertices in G .
Proof: Suppose G has $\mathrm{p} \leq 3$.Then $\gamma_{\text {sn }}-$ set does not exist. Now we consider any graph with $\mathrm{p} \geq 4$, such that $n(G) \neq \mathrm{K}_{\mathrm{p}}$
Since, $\gamma_{\mathrm{n}}(\mathrm{G}) \leq \beta_{0}[n(G)]$ and from Theorem B

$$
\gamma_{\mathrm{ssn}}[\mathrm{G}]=\alpha_{0}[\mathrm{n}(\mathrm{G})] .
$$

Further $\gamma(\mathrm{G})+\gamma_{\mathrm{ssn}}(\mathrm{G}) \leq \alpha_{0}[n(G)]+\beta_{0}[n(G)]$

$$
\begin{aligned}
& =\mathrm{V}[n(G)] \\
& =\mathrm{q}+\mathrm{c}
\end{aligned}
$$

Hence $\gamma(\mathrm{G})+\gamma_{\text {ssn }}(\mathrm{G}) \leq q+c$.

Theorem 12: For a connected (p, q) graph with $\mathrm{p} \geq 4$ vertices and $\mathrm{n}(\mathrm{G}) \neq \mathrm{K}_{\mathrm{p}}$, then $\gamma_{\mathrm{ssn}}(\mathrm{G}) \leq \mathrm{q}+\mathrm{c}-2$, where c is the number of cutvertices in G .
Proof: It is known that

$$
\gamma_{\mathrm{ssn}}[\mathrm{G}]=\alpha_{0}[n(G)]
$$

$$
=\mathrm{V}[n(G)]-\beta_{0}[n(G)] .
$$

Let $n(G)=\mathrm{H}$, by Theorem B

$$
\gamma_{\mathrm{ssn}}(\mathrm{H})=\alpha_{0}(\mathrm{H})
$$

Thus $\gamma_{\text {ssn }}[\mathrm{H}]=\mathrm{V}(\mathrm{H})-\beta_{0}(\mathrm{H})$
Further it is known that $\omega=\beta_{0}(\mathrm{H})$
Hence $\gamma_{\mathrm{ssn}}(\mathrm{G})=\mathrm{V}[n(G)]-\omega[\overline{n(G)}]$
Since, $\omega[\overline{(G)}] \geq 2$

Then $\gamma_{\mathrm{ssn}}(\mathrm{G}) \leq \mathrm{q}+\mathrm{c}-2$.

Theorem 13: For any connected (p, q) graph G, with $p \geq 4$ vertices and $n(G) \neq K_{p}$, then $i[n(G)]+\gamma_{\mathrm{ssn}}[G] \leq \mathrm{q}+\mathrm{c}$, where c is the number of cutvertices in G.

Proof: \quad Since $i[n(G)] \leq \beta_{0}[n(G)]$
and $\mathrm{Y}_{\text {ssn }}[G] \leq \alpha_{0}[n(G)]$
$i[n(G)]+\gamma_{\mathrm{ssn}}[\mathrm{G}] \leq \alpha_{0}[n(G)]+\beta_{0}[n(G)]$

$$
=\mathrm{V}[n(G)]
$$

$$
=\mathrm{q}+\mathrm{c}
$$

Then $i[n(G)]+\gamma_{\mathrm{ssn}}[\mathrm{G}] \leq \mathrm{q}+\mathrm{c}$.

Theorem 14: For any connected (p, q) graph G with $p \geq 4 v e r t i c e s$ and $n(G) \neq K_{p}$, then

$$
\left\lceil\frac{\mathrm{p}}{\Delta(\mathrm{G})+1}\right\rceil \leq \gamma_{\mathrm{ssn}}(\mathrm{G})
$$

Proof: Let D be a γ - set of G and each vertex dominates at most itself and $\Delta(\mathrm{G})$ other vertices, so $\left\lceil\frac{\mathrm{P}}{\Delta(\mathrm{G})+1}\right\rceil \leq \gamma(\mathrm{G})$ and from Theorem [9]

$$
\left\lceil\frac{\mathrm{P}}{\Delta(\mathrm{G})+1}\right\rceil \leq \gamma_{\mathrm{ssn}}(\mathrm{G})
$$

Finally we obtain Northus Gaddum Type results.

Theorem 15: For any connected (p, q) graph G and \bar{G} with $p \geq 4$ vertices and $n(G) \neq K_{p}$, then
(i) $\quad \gamma_{\text {ssn }}(\mathrm{G})+\gamma_{\mathrm{ssn}}(\bar{G}) \leq \mathrm{p}+\mathrm{q}$
(ii) $\quad \gamma_{\mathrm{ssn}}(\mathrm{G}) \cdot \gamma_{\mathrm{ssn}}(\bar{G}) \leq\left\lceil\frac{p . q}{2}\right\rceil$

References :

[1]. C.Berge, Theory of graphs and its applications, Methuen London (1962).
[2]. F. Harary, Graph Theory, Adison Wesley, Reading Mass 1972.
[3]. V.R. Kulli, Theory of Domination in Graph, Vishwa International Pub-2010.
[4]. V.R. Kulli. On Entire Dominating Number, Second Conf. Ram. Math. Soc. Madras,1987.
[5]. M.H. Muddebihal, Lict and Litact graph of a graph, J. analysis and computation, Vol-3, No - 2 (33-43), 2006.
[6]. T.W.Hynes, S.T. Hedetniemi and P.J.Slater in Fundamentals of Domination in Graphs Marcell Dekkens, INC. 1998.
[7]. S.L. Mitchell and S.T. Hedetniemi, Edge domination in trees, Congr. Number 19, (489-509), 1977.
[8]. O. Ore, Theory of graphs Amer math Soc. Colloq. Publ. 38. Providence (1962).

[^0]: * Department of Mathematics Gulbarga University, Gulbarga - 585 106, Karnataka - India

[^1]: A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

 International Journal of Engineering \& Scientific Research http://www.ijmra.us

[^2]: A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

 International Journal of Engineering \& Scientific Research http://www.ijmra.us

