STRONG SPLIT LICT DOMINATION OF A GRAPH

M.H. Muddebihal^{*}

Megha Khandelwal*

ABSTRACT

In this paper we initiate the study of a variation of standard domination such as strong split Lict domination. A dominating set D_{ss} of a lict graph n(G) is a strong split lict dominating set if $\langle V(n(G)) - D_{ss} \rangle$ is totally disconnected with at least two vertices. The strong split lict domination number of a graph is the minimum cardinality of the strong split lict dominating set of G and is denoted by $\gamma_{ssn}(G)$. In this paper γ_{ssn} - number of some standard graphs is obtained. Also we established upper bounds and lower bounds on γ_{ssn} - number in terms of elements of G. **Subject classification number: AMS-O5C69, 05C70.**

Keywords: Domination/ Entire Domination/ Edge Domination/Strong Split Domination/Lict Graph.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

^{*} Department of Mathematics Gulbarga University, Gulbarga – 585 106, Karnataka – India

<u>ISSN: 2347-6532</u>

1. Introduction: The graph theoretical terminology not present here can be found in Harary [2].All the graphs considered here are simple, finite, non-trivial, undirected and connected. As usual p = |V| and q = |E| denote the number of vertices and edges of a graph *G*. The study of domination in graphs was begun by Ore [8] and Berge [1].The domination in graphs is discussed by T.W.Hynes, S.T.Hedetniemi and P.J. Slater in [6]

For any graph G = (V, E), the *lict graph* n(G) has vertex set as the union of the set of edges and the set of cut vertices of graph G in which two vertices of n(G) are adjacent if and only if their corresponding elements in G are adjacent or incident. This concept was introduced in [5].

We begin by recalling some standard definition from domination theory.

A set $D \subseteq V(G)$ is said to be a *dominating set* of G, if every vertex in (V - D) is adjacent to at least one vertex in D. The minimum cardinality of minimal dominating set D is called *domination number* of G and is denoted by $\gamma(G)$.

Edge dominating set $F \subseteq E(G)$ is such that every edge in (E(G) - F) must be adjacent to at least one edge in F. The minimum cardinality of edge dominating set is called *edge domination number* and is denoted by $\gamma'(G)$. Edge domination number was studied by S.L. Mitchell and Hedetniemi in [7].

A set D_{ε} of elements of G is an *entire dominating set* if every element not in D_{ε} is either adjacent or incident to at least one element in D_{ε} . The *entire domination number* is denoted as $\gamma_{\varepsilon n}(G)$. This concept was introduced in [4].

A dominating set D_s of G is called *strong split dominating set* of G if $\langle V(G) - D_s \rangle$ is totally disconnected with at least two isolated vertices. The *strong split domination number* $\gamma_{ss}(G)$ is the minimum cardinality of minimal strong split dominating set. This concept of strong split domination was introduced in [3].

Analogously we define *strong split lict dominating set* of a graph G. A set D_{ss} is said to be strong split lict dominating set if $\langle V(n(G)) - D_{ss} \rangle$ is totally disconnected with at least two vertices. The *strong split lict domination number* of a graph G is the minimum cardinality of the strong split lict dominating set of G and is denoted by $\gamma_{ssn}(G)$.

A vertex cover in a graph G is a set of vertices that covers all the edges of G. The vertex covering number α_0 G is a minimum cardinality of a vertex cover in G. An edge cover of a

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

Volume 2, Issue 7

<u>ISSN: 2347-6532</u>

graph *G* without isolated vertices is a set of edges of *G* that covers all the vertices of *G*. The *edge covering number* α_1 *G* of a graph *G* is the minimum cardinality of an edge cover of *G*. A set of vertices/edges in a graph *G* is called an *independent set* if no two vertices/edges in the set are adjacent. The *vertex independence number* β_0 *G* is the maximum cardinality of an independent set of vertices. The *edge independence number* β_1 *G* of a graph *G* is the maximum cardinality of an independent set of edges.

A set of vertices S in a graph G is called an *independent set* if no two vertices in S are adjacent. The *lower independence number* i (G) is the minimum cardinality of a maximal independent set of G.

The minimum distance between any two farthest vertices of a connected graph G is called the *diameter* of G and is denoted by *diam* G.

The *clique number* of a graph G is the maximum order of the largest clique in G and it is denoted as $\omega(G)$.

We need the following Theorems to establish our further results:

Theorem A [7]: If G is a graph with no isolated vertex, then $\gamma \in G \leq \frac{p}{2}$

Theorem B [3]: For any connected graph $G_{,(G)} \neq K_{p_{,}} \gamma_{ss}(G) = \alpha_{0}(G)$.

In section 2, we determine this parameter for some standard graphs. We obtain best possible upper and lower bound for $\gamma_{ssn}(G)$. Further we obtain Northus Gaddum type results.

2. RESULTS

July

2014

First we list out the exact values of $\gamma_{ssn}(G)$ for some standard graphs.

Theorem 1:

- 1) For any cycle C_p with $p \ge 4$ vertices $\gamma_{ssn}[C_p] = \begin{cases} \frac{p}{2} & \text{if } p \equiv 0 \pmod{2} \\ \frac{p}{2} & \text{otherwise} \end{cases}$
- 2) For any path P_p with $p \ge 4$ vertices $\gamma_{ssn}[P_p] = p 1 = q$.
- 3) For any complete graph K_p with $p \ge 4$ vertices $\gamma_{ssn}[P_p] = \frac{p(p-1)}{2} 2$.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

IJESR

Volume 2, Issue 7

4) For any bipartite graph $K_{m,n}$ with $m \le n$, $\gamma_{ssn}[K_{m,n}] = m.n - m.$

The following are some observations on $\gamma_{ssn}[G]$:

- i) For any graph $G = K_{m,n}$; $m, n \ge 2, m < n$,
 - $n(K_{m,n}) = K_m \times K_n.$

Hence $\gamma_{ssn}(K_m \times K_n) = m.n - m.$

ii) For any graph G, $\gamma_{ss}(G) \leq \gamma_{ssn}(G)$. Equality holds for any $G = C_p$.

iii) For any path P_p :

a)
$$\gamma_{ssn}[P_p] = \gamma_{ss}[L(P)_p] + \left\lfloor \frac{p}{2} \right\rfloor$$
 where $p \ge 4$.
b) $\gamma_{ssn}[P_p] = \gamma_{ssn}[L(P)_p] + 1$ where $p \ge 5$.

In the following Theorem we established the equality for γ_{ssn} of a wheel.

Theorem 2: For a wheel Wp; $p \ge 4$ vertices

$$\gamma_{\rm ssn} (\mathbf{W}_{\rm p}) = \begin{cases} p+n, & n = \frac{p-4}{2}, & P = \text{even} \\ p+m, & m = \frac{p-3}{2}, & P = \text{odd} \end{cases}$$

Proof: Let
$$V[Wp] = \{v_1, v_2, \dots, v_p\}$$
; deg $v_i = 3$, for $i = 1, 2, \dots, p-1$ and
deg $v_p = p - 1$. Let $E[W_p] = \{e_1, e_2, \dots, e_{p-2}, e_{p-1}, e'_1, e'_2, \dots, e_{p-1}'\}$
where each $e_i = v_i v_p$ With $i = 1, 2, \dots, p-1$ and $e'_1 = v_i v_{i+1}, i = 1, 2, \dots, p-2$ and
 $e'_{p-1} = v_{p-1} v_1$. Now $V[n(W_p)] = \{e_1, e_2, \dots, e_{p-2}, e'_1, e'_2, \dots, e_{p-1}'\}$.
Consider $S_1, S_2 \subseteq V[n(Wp)]$, such that $S_1 = \{e_1, e_2, \dots, e_{p-2}, e_{p-1}\}$ and
 $S_2 = \{e'_1, e'_2, \dots, e'_{p-2}, e'_{p-1}\}$. The induced subgraph $\langle S_1 \rangle$ is a complete subgraph
 K_{P-1} and induced subgraph $\langle S_2 \rangle$ is a cycle in n (G). We consider the following two
cases.

Case 1: Suppose p is even. Then $|S_2|$ in an odd number, consider $S'_1 \subseteq S_1$ with

 $\mathbf{S'}_1 = \{e_1, e_2, \dots, e_{p-2}\}$ and consider another set $\mathbf{S'}_2 \subseteq \mathbf{S}_2$ such that

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

 $S'_{2} = \{e'_{2}, e'_{4}, \dots, e'_{p-4}, e'_{p-2}, e'_{p-1}\}$. Clearly $\langle V(n(W_{p})-(S'_{1} \cup S'_{2})) \rangle$ is totally disconnected. Then $(S'_{1} \cup S'_{2})$ is a strong split dominating set of n(Wp) by the definition.

Hence
$$\gamma_{ssn} (W_p) = |S'_1 \cup S'_2| = (P-2) + 2 + \frac{P-4}{2}$$

Which results in to $\gamma_{ssn} (Wp) = P + n$, where $n = \frac{P-4}{2}$

Case 2: Suppose p is odd. Then $|S_2| =$ even number. We consider $S''_1 \subseteq S_1$, with $S''_1 = \{e_1, e_2, \dots, e_{p-2}\}$ and another set $S''_2 \subseteq S_2$, such that $S''_2 = \{e'_2, e'_3, e'_5, e'_7, e'_9, \dots, e'_{p-5}, e'_{p-3}e'_{p-2}, e'_{p-1}\}$. Clearly $S''_1 \cup S''_2$ forms a strong split lict dominating set of W_p , since $\langle V[n(W_p)] - (S''_1 \cup S''_2) \rangle$ is totally disconnected.

Then $\gamma_{ssn} (W_p) = |(S''_1 \cup S''_2)|$, also S''_1 , S''_2 are vertex disjoint sets, so it results in to $\gamma_{ssn} (W_p) = p + \frac{p-3}{2} = p+m$, where $m = \frac{p-3}{2}$, p = odd.

Here we have found an upper bound for γ_{ssn} (G) in terms of γ (G).

- **Theorem 3:** For any connected (p.q) graph G, $n(G) \neq K_p$ with $p \ge 4$ vertices, $\gamma_{ssn} [G] \ge p - [\gamma (G)+1]$. Equality holds for C_{2p} , $p \ge 3$.
 - **Proof:** In n (G), V $[n(G)] = E(G) \cup C(G)$. If $n(G) = K_p$, Then by definition, γ_{ssn} set does not exist. We consider the following two cases.
 - **Case 1:** Suppose G is a tree. Then in n(G) each block is complete. Let $S = \{e_1, e_2, \dots, e_i\}$ be the set of all nonend edges in G and each $e_i \in G$ preserves a one to one correspondence with $v_i \in D$, where $D = \{v_1, v_2, v_3 \dots v_i\}$ and $D \subseteq V[n(G)]$. Suppose |D| = h. Then $\langle V[n(G)] - D \rangle = H$. Also H has maximum h+1 components. Now we partition H into H₁ and H₂, where H₁ = $\{v_j\}$. $1 \le j \le h+1$, and each v_j is

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

<u>ISSN: 2347-6532</u>

an isolate in H. Consider $H_2 = \{b_k\}$. $1 \le k \le h+1$ and each b_k is a complete block with m vertices; $m \ge 2$. We consider a dominating set D_1 which is not minimal in H_2 . The set D_1 consists of (m-1) vertices from each block b_k , such that $\langle V[n(G)] - (D \cup D_1) \rangle$ is totally disconnected, it implies that $(D \cup D_1)$ is γ_{ssn} - set of G.

Further let D is the minimal dominating set of G, then at least one vertex $v \in V[n(G)]$ such that $v \in (D_1 \cup D_2) \cap D$ then it follows $|D_1 + D_2| + |D| + 1 \ge p$ resulting into $\gamma_{ssn}(G) = p - [\gamma(G) + 1]$.

Case 2: Suppose G is not a tree. Then G has $p \ge 4$ and it contains at least one block with minimum three vertices.Now $V[n(G)] = E(G) \cup C(G)$. Let $S_1 = \{e_1, e_2, \dots, e_j\}$ be the set of nonendbridges of G, which preserves one to one correspondence with the vertex set $D_1 \subseteq V[n(G)]$. Let $|D_1| = h$, then $\langle V[n(G)] - D_1 \rangle = H$ has h+1 components. We consider $H = H_1 \cup H_2 \cup H_3$; where $H_1 = \{v_i\}$ where each $v_i \in V[(n(G)]$ is an isolate and H_2 is a set of vertex disjoint components which are complete, $H_2 = \bigcup_{i=1}^{h+1} K_{m_i}$, where each K_{m_i} is a complete block with m_i vertices, $m_i \ge V[n(G)] = \bigcup_{i=1}^{h+1} K_{m_i}$.

2, 3, 4..... for $i \ge 1$ and $H_3 = \bigcup_{j=1}^{n+1} B_j$ where each B_j is a noncomplete block. We consider $D_2 = \{v_i\} \subseteq V$ [H₂] which includes $(m_i - 1)$ vertices from each $K_{m_i} \in H_2$ gives an isolate, then $(H_2 - D_2)$ is totally disconnected, Further we consider $D_3 = \{v_1, v_2, \dots, v_k\} \forall v_i \in Bj, 1 \le i \le k$, and degree of each v_i is $\delta(B_j)$

Now we consider $B_j - D_3 = H_4$ in which each element is an isolate, then $(D_1 \cup D_2 \cup D_3)$ is such that $\langle V[n(G)] - (D_1 \cup D_2 \cup D_3) \rangle$ is totally disconnected. So $(D_1 \cup D_2 \cup D_3)$ is a γ_{ssn} - set. And if D is the minimal dominating set of G then there exist at least one vertex $v_i \in C$ (G) such that $v_i \in D \cap (D_1 \cup D_2 \cup D_3)$ then it gives $|D_1 \cup D_2 \cup D_3| + |D| + 1 \ge p$ or $(D_1 \cup D_2 \cup D_3) \ge p - (|D|+1)$ such that $\gamma_{ssn}(G) \ge p - (\gamma(G) + 1)$.Hence the result.

For equality:Let C_p be a cycle with $p \ge 6$ or $G = C_{2n}$, $n \ge 3$.

Let D_{ss} be the minimal strong split lict dominating set of G, then

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

$$|\mathbf{D}_{ss}| = \left\lceil \frac{p}{2} \right\rceil; \text{ whereas } \mathbf{p} - [\gamma(\mathbf{G}) + 1] = \mathbf{p} - \left(\left\lceil \frac{p}{3} \right\rceil + 1 \right). \text{ Now one can easily verify that}$$
$$|\mathbf{D}_{ss}| = \mathbf{p} - (\gamma(\mathbf{G}) + 1) \text{ for a cycle } \mathbf{C}_{2n}, n \ge 3.$$

Theorem 4: For any connected (p, q) graph G, with $p \ge 4$ vertices and $n(G) \ne K_{p}$, then $\gamma_{\varepsilon}[G] \le \gamma(G) + \gamma'[G] \le \gamma_{ssn}[G]$.

Proof: First we establish the lower bound. Let D and F be the minimal dominating set and edge dominating set of G. Then $D \cup F$ is an entire dominating set of G. Thus $\gamma_{\varepsilon}(G) \leq |D \cup F| = \gamma(G) + \gamma'(G)$.

For the upper bound Let D_{ss} is a γ_{ssn} - set of G and let $F_1 = \{e_1, e_2, \dots, e_n\}$ be the minimal edge dominating set of G, then there exist $D_1 = \{v_1, v_2, \dots, v_n\} \subseteq V[n(G)] \forall v_i \in D_1$, v_i corresponds to $e_i \in F_1$, such that, $D_1 \subseteq D_{ss}$. We take $F_2 = \{e_j\}$ where each e_j is nonendbridge in G, then $D_2 = \{v_j\}$ is a set of all cut vertices in n(G) such that each $v_j \in D_2$ corresponds to $e_j \in F_2$ and $D_2 \subseteq D_{ss}$. Now consider a set $V' \subseteq V[n(G)]$ such that $V' \in N(D_1 \cup D_2)$, so that $V' \subseteq V[n(G)] - (D_1 \cup D_2)$ and $\langle V[n(G)] - (V' \cup D_1 \cup D_2) \rangle$ is totally disconnected then

$$(D_1 \cup D_2) \cup V' = D_{ss}$$
(1)

Now let D_3 is the minimal dominating set of G, then D_3 consists of vertices which are incident to at least one edge $e_j \in F_2$. Also in G each cut vertex $v_j \in D_3$ is such that $v_j \in V' \subseteq V$ [n(G)], then $|D_3| \leq |F_2| + |V'|$ which implies $|D_3| \leq |D_2| + |V'|$ _____(2)

Combining (1) and (2) we get $|D_1| + |D_3| \le |D_{ss}|$ which gives

$$\gamma(G) + \gamma'(G) \leq \gamma_{ssn}(G).$$

Thus
$$\gamma_{\varepsilon n}(G) \leq \gamma(G) + \gamma'(G) \leq \gamma_{ssn}(G)$$
.

Equality for strong split domination number of a tree is established in the following Theorem.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

IJESR

<u>ISSN: 2347-6532</u>

Theorem 5: For any connected (p, q) tree T, with $p \ge 4$ vertices, $T \ne K_{1,n}$ with $n \ge 2$, then $\gamma_{ssn}(T)=q$

Proof: Suppose T is a tree and assume $T = K_{1,n}$. Then $n(T) = K_p$, from the definition of strong split lict domination, γ_{ssn} - set does not exist.

Further for any tree T, with $p \ge 4$, each block in n (T) is complete and each cut vertex of n(G) lies on exactly two blocks. Now V[n(G)] = E(G) \cup C (G) and V [n(G)] – E(G) = C(G) gives a disconnected graph such that $\forall v_i \in C$ (G) is an isolate. Clearly E(G) is a Y_{ssn}-set of T. Hence |E (G)| = q = Y_{ssn}(G).

Theorem 6: If G is a connected graph of order $p \ge 4$ and $n(G) \ne K_p$, then

 $\left[\frac{diamG+1}{2}\right] \leq \gamma_{ssn}(G)$. Equality holds for C₄.

- **Proof:** Suppose E (G) = { $e_1, e_2, ..., e_n$ } and C(G) = { $c_1, c_2, c_3, ..., c_j$ } be the edge set and cutvertex set of G respectively. Then V [n(G)] = E(G) \cup C(G). Let S = { $e_1, e_2, ..., e_j$ }, $1 \le j \le n$ constitute the diameteral path in G. Then |S| = diam G. Let D be a dominating set in n(G) and D₁ \subseteq V[n(G)] D, such that D₁ \in N (D), again we take D'₁ \subseteq D₁ such that H = V [n(G)] (D \cup D'₁) and \langle H \rangle is totally disconnected. Hence D \cup D'₁ = D_{ss}. Further since S \subseteq V [(n(G)] and D \cup D'₁ is a γ_{ssn} set, the diameteral path includes at most γ_{ssn} (G) 1 vertices which belongs to neighborhood of (D \cup D'₁) in n(G). Hence $diam G \le \gamma_{ssn}$ (G) + γ_{ssn} (G) 1 which follows $\left[\frac{diamG+1}{2}\right] \le \gamma_{ssn}$ (G). One can easily verify for the equality.
- **Theorem 7:** For any connected (p, q) graph G, $n(G) \neq K_p$ then $\gamma_{ssn}(G) \leq \alpha_1(G) + \alpha_1[n(G)] 1$ Equality holds for Wp, $p \geq 4$ vertices.

Proof: Consider a set $D = \{e_i\}, i = 1, 2..., n$ be the maximal edge cover of G, so that

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

<u>ISSN: 2347-6532</u>

 $|D| = \alpha_1$ (G). Further V $[n(G)] = \{e_j\}$, where each $e_j = e_i e_j$ or $e_j c_k$ where adjacency of e_i with e_j , and adjacency of e_j with cut vertex c_k is preserved as in G. We take a spanning tree H of n(G) and let $D_1 = \{e'_1, e'_2, \dots, e'_k\} \subset E[n(G)]$ be the edge cover of H, then $|D_1|=\alpha_1$ (H) $=\alpha_1 [n(G)]$. Consider $H_1 = \{e''_j\}$ where each e''_j is only one edge chosen among all edges $e_i e_j$ incident to vertex e_j in n(G) which corresponds to edge e_j of G and $e_j \in \alpha_1(G)$ set, then $H_1 \subset \alpha_1(G)$ -set. Further we consider a strong split dominating set $D_{ss} = \{e_j, c_k\}$ in n(G), such that $D_{ss} \subseteq H \cup H_1$, which gives $D_{ss} \subseteq |D| + |D_1| - 1$ resulting in to $\gamma_{ssn}(G) \le \alpha_1(G) + 1$

$$\alpha_1 (n (G)) - 1$$

Theorem 8: For any connected (p, q) graph G.
$$n(G) \neq K_p$$
, $p \ge 4$ vertices, $\gamma_{ssn}(G) \ge \frac{p}{2}$

- **Proof:** We consider the following cases:
- **Case 1:** Suppose G is a tree, with $H = \{v_1, v_2...v_i\}$ be the set of all vertices in T. Then $I = [v_1, v_2, ..., v_j]$ be the set of all end vertices in T and let $H' = [e_1, e_2, ..., e_i]$ be the set of all non end edges in T, also $I' = \{e_1, e_2, ..., e_j\}$ be the set of all end edges in T. In *n* (T), C be the set of all cut vertices in T, V [*n* (T)] = $H' \cup I' \cup C$. Suppose D_{ss} be a γ_{ssn} - set of T such that $D_{ss} = H' \cup I'$ where $I'' \subseteq I'$, which gives

$$|\mathbf{H}' \cup \mathbf{I}''| = \gamma_{ssn} (\mathbf{T}) \ge \frac{\mathbf{H} \cup \mathbf{I}}{2}$$
 resulting in to $\gamma_{ssn} (\mathbf{G}) \ge \left| \frac{\mathbf{p}}{2} \right|$.

- **Case 2:** Suppose G is not a tree, then there exists at least one edge joining two distinct vertices of a tree T, which forms a cycle. From the above case 1 $|V(n(G))| \ge |H' \cup I' \cup C| + 1$ which gives $|H' \cup I''| + 1 \ge \left|\frac{H \cup I}{2}\right| + 1$ resulting in to $\gamma_{ssn}(G) \ge \left\lceil \frac{p}{2} \right\rceil$.
- **Theorem 9:** For any connected (p, q) graph G with $n(G) \neq K_p$, $p \ge 4$ vertices, $\gamma_{ssn}(G) \ge \gamma(G)$. Equality holds if $G = C_4$.
 - **Proof:** Let G be a connected (p, q) graph and D_{ss} and D are γ_{ssn} set and γ -set of G respectively. By the Theorem [A] and Theorem [8], we have $\gamma_{ssn}(G) \ge \gamma(G)$. Also one can easily verify the equality.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

- **Theorem10:** For any connected (p, q) graph G. $n(G) \neq K_p$, $p \ge 4$ vertices $\gamma_{ss} [L(G)] \le \gamma_{ssn} (G)$ equality holds if G is a block graph.
 - **Proof:** Since $V[n(G)] \supseteq V[L(G)]$ by definition. Hence the result follows. And if G = block graph then V[n(G)] = V[L(G)] which gives the equality.

Theorem 11: For any connected (p, q) graph G, with $p \ge 4$ vertices, $n(G) \ne K_p$,

 $\gamma_n(G) + \gamma_{ssn}(G) \le q + c$, where c is the number of cutvertices in G.

Proof: Suppose G has $p \le 3$. Then γ_{ssn} - set does not exist. Now we consider any graph with $p \ge 4$, such that $n(G) \ne K_p$

Since , $\gamma_n(G) \leq \beta_0[n(G)]$ and from Theorem B

 $\gamma_{ssn} [G] = \alpha_0 [n(G)].$ Further $\gamma(G) + \gamma_{ssn}(G) \le \alpha_0 [n(G)] + \beta_0 [n(G)]$ = V [n(G)]= q + c

Hence $\gamma(G) + \gamma_{ssn}(G) \leq q + c$.

Theorem 12: For a connected (p, q) graph with $p \ge 4$ vertices and $n(G) \ne K_p$, then

 $\gamma_{ssn}(G) \le q + c - 2$, where c is the number of cutvertices in G.

Proof: It is known that

 $\gamma_{ssn} [G] = \alpha_0 [n(G)]$ $= V [n(G)] - \beta_0[n(G)] .$ Let n(G) = H, by Theorem B $\gamma_{ssn}(H) = \alpha_0(H)$ Thus $\gamma_{ssn} [H] = V(H) - \beta_0(H)$ Further it is known that $\omega \left(\overline{H} \right) = \beta_0 (H)$ Hence $\gamma_{ssn} (G) = V [n (G)] - \omega [\overline{n(G)}]$ Since , $\omega [\overline{(G)}] \ge 2$

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

Then $\gamma_{ssn}(G) \leq q + c - 2$.

Theorem 13: For any connected (p, q) graph G, with $p \ge 4$ vertices and $n(G) \ne K_p$, then

 $i[n(G)] + \gamma_{ssn}[G] \le q + c$, where c is the number of cutvertices in G.

Proof: Since $i[n(G)] \le \beta_0 [n(G)]$ and $Y_{ssn} [G] \le \alpha_0 [n(G)]$ $i [n(G)] + \gamma_{ssn} [G] \le \alpha_0 [n(G)] + \beta_0 [n(G)]$ = V [n (G)]= q + c.Then $i [n(G)] + \gamma_{ssn} [G] \le q + c.$

Theorem 14: For any connected (p, q) graph G with $p \ge 4$ vertices and $n(G) \ne K_p$, then

$$\left\lceil \frac{\mathbf{p}}{\Delta(\mathbf{G})+1} \right\rceil \leq \gamma_{\rm ssn}(\mathbf{G})$$

Proof: Let D be a γ - set of G and each vertex dominates at most itself and $\Delta(G)$ other

vertices, so
$$\left| \frac{P}{\Delta(G)+1} \right| \le \gamma$$
 (G) and from Theorem [9]
 $\left[\frac{P}{\Delta(G)+1} \right] \le \gamma_{ssn}$ (G)

Finally we obtain Northus Gaddum Type results.

Theorem 15: For any connected (p, q) graph G and \overline{G} with $p \ge 4$ vertices and $n(G) \ne K_p$, then

(i)
$$\gamma_{\text{ssn}}(G) + \gamma_{\text{ssn}}(\overline{G}) \le p+q$$

(ii) $\gamma_{\text{ssn}}(G) \cdot \gamma_{\text{ssn}}(\overline{G}) \le \left[\frac{p\cdot q}{2}\right]$

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering & Scientific Research http://www.ijmra.us

References :

- [1]. C.Berge, Theory of graphs and its applications, Methuen London (1962).
- [2]. F. Harary, Graph Theory, Adison Wesley, Reading Mass 1972.
- [3]. V.R. Kulli, Theory of Domination in Graph, Vishwa International Pub-2010.
- [4]. V.R. Kulli. On Entire Dominating Number, Second Conf. Ram. Math. Soc. Madras, 1987.
- [5]. M.H. Muddebihal, Lict and Litact graph of a graph, J. analysis and computation, Vol – 3, No – 2 (33-43), 2006.
- [6]. T.W.Hynes, S.T. Hedetniemi and P.J.Slater in Fundamentals of Domination in Graphs Marcell Dekkens, INC.1998.
- [7]. S.L. Mitchell and S.T. Hedetniemi, Edge domination in trees, Congr. Number 19, (489-509), 1977.
- [8]. O. Ore, Theory of graphs Amer math Soc. Colloq. Publ. 38. Providence (1962).

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research

http://www.ijmra.us